• 05
  • 02
  • 03
  • 04
  • 05
  • 05
  • 05
  • 05
  • 05
OTHER CHEMICALS > Hydrazine Hydrate

Hydrazine (also called diazane) is an inorganic compound with the formula N2H4. It is a colourless flammable liquid with an ammonia-like odor. Hydrazine is highly toxic and dangerously unstable unless handled in solution. As of 2002, approximately 260,000 tons were manufactured annually.[7] Hydrazine is mainly used as a foaming agent in preparing polymer foams, but significant applications also include its uses as a precursor to polymerization catalysts and pharmaceuticals. Additionally, hydrazine is used in various rocket fuels and to prepare the gas precursors used in air bags. Hydrazine is used within both nuclear and conventional electrical power plant steam cycles as an oxygen scavenger to control concentrations of dissolved oxygen in an effort to reduce corrosion.

Other industrial uses :

Hydrazine is used in many processes including: production of spandex fibers, as a polymerization catalyst; in fuel cells, solder fluxes; and photographic developers, as a chain extender in urethane polymerizations, and heat stabilizers. In addition, a semiconductor deposition technique using hydrazine has recently been demonstrated, with possible application to the manufacture of thin-film transistors used in liquid crystal displays. Hydrazine in a 70% hydrazine, 30% water solution is used to power the EPU (emergency power unit) on the Lockheed F-16 Fighting Falcon fighter plane. The explosive Astrolite is made by combining hydrazine with ammonium nitrate.

Hydrazine is often used as an oxygen scavenger and corrosion inhibitor in boiler water treatment. However due to the toxicity and certain undesired effects[clarification needed] this practice is discouraged.

Rocket fuel
Anhydrous hydrazine being loaded into the MESSENGER space probe. Note the safety suit the technician is wearing

Hydrazine was first used as a rocket fuel during World War II for the Messerschmitt Me 163B (the first rocket-powered fighter plane), under the code name B-Stoff (hydrazine hydrate). When mixed with methanol (M-Stoff) and water it was called C-Stoff.

Hydrazine is also used as a low-power monopropellant for the maneuvering thrusters of spacecraft, and the Space Shuttle's auxiliary power units (APUs). In addition, monopropellant hydrazine-fueled rocket engines are often used in terminal descent of spacecraft. Such engines were used on the Viking program landers in the 1970s as well as the Phoenix lander and Curiosity rover which landed on Mars in May 2008 and August 2012, respectively.

In all hydrazine monopropellant engines, the hydrazine is passed by a catalyst such as iridium metal supported by high-surface-area alumina (aluminium oxide) or carbon nanofibers,[30] or more recently molybdenum nitride on alumina,[31] which causes it to decompose into ammonia, nitrogen gas, and hydrogen gas according to the following reactions:

    3 N2H4 → 4 NH3 + N2
    N2H4 → N2 + 2 H2
    4 NH3 + N2H4 → 3 N2 + 8 H2

Reactions 1 and 2 are extremely exothermic (the catalyst chamber can reach 800 °C in a matter of milliseconds,[30]) and they produce large volumes of hot gas from a small volume of liquid,[31] making hydrazine a fairly efficient thruster propellant with a vacuum specific impulse of about 220 seconds.[32] Reaction 3 is endothermic and so reduces the temperature of the products, but also produces a greater number of molecules. The catalyst structure affects the proportion of the NH3 that is dissociated in Reaction 3; a higher temperature is desirable for rocket thrusters, while more molecules are desirable when the reactions are intended to produce greater quantities of gas[citation needed].

Other variants of hydrazine that are used as rocket fuel are monomethylhydrazine, (CH3)NH(NH2) (also known as MMH), and unsymmetrical dimethylhydrazine, (CH3)2N(NH2) (also known as UDMH). These derivatives are used in two-component rocket fuels, often together with nitrogen tetroxide, N2O4, sometimes known as dinitrogen tetroxide. These reactions are extremely exothermic, and the burning is also hypergolic, which means that it starts without any external ignition source.

There are ongoing efforts to replace hydrazine along with other highly toxic substances from the aerospace industry. Promising alternatives include hydroxylammonium nitrate, 2-Dimethylaminoethylazide(DMAZ)[33] and energetic ionic liquids.

Fuel cells

The Italian catalyst manufacturer Acta has proposed using hydrazine as an alternative to hydrogen in fuel cells. The chief benefit of using hydrazine is that it can produce over 200 mW/cm2 more[clarification needed] than a similar hydrogen cell without the need to use expensive platinum catalysts. As the fuel is liquid at room temperature, it can be handled and stored more easily than hydrogen. By storing the hydrazine in a tank full of a double-bonded carbon-oxygen carbonyl, the fuel reacts and forms a safe solid called hydrazone. By then flushing the tank with warm water, the liquid hydrazine hydrate is released. Hydrazine has a higher electromotive force of 1.56 V compared to 1.23 V for hydrogen. Hydrazine breaks down in the cell to form nitrogen and hydrogen which bonds with oxygen, releasing water.[35] Hydrazine was used in fuel cells manufactured by Allis-Chalmers Corp., including some that provided electric power in space satellites in the 1960s.

Gun propellant

A mixture of 63% hydrazine, 32% hydrazine nitrate and 5% water is a standard propellant for experimental bulk-loaded liquid propellant artillery. The propellant mixture above is notable for being one of the most predictable and stable, with a remarkably flat pressure profile during firing. Misfires are usually caused by inadequate ignition. The movement of the shell after a misignition causes a large bubble with a larger ignition surface area, and the greater rate of gas production causes very high pressure, sometimes including catastrophic tube failures (i.e. explosions).