• 05
  • 02
  • 03
  • 04
  • 05
  • 05
  • 05
  • 05
  • 05

Sodium carbonate (also known as washing soda, soda ash and soda crystals), Na2CO3, is a sodium salt of carbonic acid (soluble in water). It most commonly occurs as a crystalline heptahydrate, which readily effloresces to form a white powder, the monohydrate. Pure sodium carbonate is a white, odorless powder that absorbs moisture from the air, has an alkaline taste, and forms a strongly alkaline water solution. Sodium carbonate is domestically well known for its everyday use as a water softener. It can be extracted from the ashes of many plants. It is synthetically produced in large quantities from salt (sodium chloride) and limestone by a method known as the Solvay process.


The manufacture of glass is one of the most important uses of sodium carbonate. Sodium carbonate acts as a flux for silica, lowering the melting point of the mixture to something achievable without special materials. This "soda glass" is mildly water soluble, so some calcium carbonate is added to the pre-melt mixture to make the glass produced insoluble. This type of glass is known as soda lime glass: "soda" for the sodium carbonate and "lime" for the calcium carbonate. Soda lime glass has been the most common form of glass for centuries.

Sodium carbonate is also used as a relatively strong base in various settings. For example, sodium carbonate is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of photographic film developing agents.

It is a common additive in municipal pools used to neutralize the corrosive effects of chlorine and raise pH.

In cooking, it is sometimes used in place of sodium hydroxide for lyeing, especially with German pretzels and lye rolls. These dishes are treated with a solution of an alkaline substance to change the pH of the surface of the food and improve browning.

In taxidermy, sodium carbonate added to boiling water will remove flesh from the skull or bones of trophies to create the "European skull mount" or for educational display in biological and historical studies.

In chemistry, it is often used as an electrolyte. This is because electrolytes are usually salt-based, and sodium carbonate acts as a very good conductor in the process of electrolysis. In addition, unlike chloride ions, which form chlorine gas, carbonate ions are not corrosive to the anodes. It is also used as a primary standard for acid-base titrations because it is solid and air-stable, making it easy to weigh accurately.

Domestic use

In domestic use, it is used as a water softener in laundering. It competes with the magnesium and calcium ions in hard water and prevents them from bonding with the detergent being used. Sodium carbonate can be used to remove grease, oil and wine stains. Sodium carbonate is also used as a descaling agent in boilers such as those found in coffee pots and espresso machines.

In dyeing with fiber-reactive dyes, sodium carbonate (often under a name such as soda ash fixative or soda ash activator) is used to ensure proper chemical bonding of the dye with cellulose (plant) fibers, typically before dyeing (for tie dyes), mixed with the dye (for dye painting), or after dyeing (for immersion dyeing).

Sodium carbonate test

The sodium carbonate test (not to be confused with sodium carbonate extract test) is used to distinguish between some common metal ions, which are precipitated as their respective carbonates. The test can distinguish between Cu, Fe and Ca/Zn/Pb. Sodium carbonate solution is added to the salt of the metal. A blue precipitate indicates Cu2+ ion. A dirty green precipitate indicates Fe2+ ion. A yellow-brown precipitate indicates Fe3+ ion. A white precipitate indicates Ca2+, Zn2+ or Pb2+ ion. The compounds formed are, respectively, copper(II) carbonate, iron(II) carbonate, iron(III) oxide, calcium carbonate, zinc carbonate and lead(II) carbonate. This test is used to precipitate the ion present as almost all carbonates are insoluble. While this test is useful for telling these cations apart, it fails if other ions are present, because most metal carbonates are insoluble and will precipitate. In addition, calcium, zinc and lead ions all produce white precipitates with carbonate, making it difficult to distinguish between them. Instead of sodium carbonate, sodium hydroxide may be added, this gives nearly the same colours, except that lead and zinc hydroxides are soluble in excess alkali, and can hence be distinguished from calcium. For the complete sequence of tests used for qualitative cation analysis, see qualitative inorganic analysis.

Other applications

Sodium carbonate is a food additive (E500) used as an acidity regulator, anti-caking agent, raising agent, and stabilizer. It is one of the components of kansui, a solution of alkaline salts used to give ramen noodles their characteristic flavor and texture. It is also used in the production of snus (Swedish-style snuff) to stabilize the pH of the final product. In Sweden, snus is regulated as a food product because it is put into the mouth, requires pasteurization, and contains only ingredients that are approved as food additives.

Sodium carbonate is also used in the production of sherbet powder. The cooling and fizzing sensation results from the endothermic reaction between sodium carbonate and a weak acid, commonly citric acid, releasing carbon dioxide gas, which occurs when the sherbet is moistened by saliva.

In China, it is used to replace lye-water in the crust of traditional Cantonese moon cakes, and in many other Chinese steamed buns and noodles.

Sodium carbonate is used by the brick industry as a wetting agent to reduce the amount of water needed to extrude the clay.

In casting, it is referred to as "bonding agent" and is used to allow wet alginate to adhere to gelled alginate.

Sodium carbonate is used in toothpastes, where it acts as a foaming agent and an abrasive, and to temporarily increase mouth pH.

Sodium carbonate is used by the cotton industry to neutralize the sulfuric acid need for acid de-linting of fuzzy cottonseed.

Sodium carbonate, in a solution with common salt, may be used for cleaning silver. In a non-reactive container (glass, plastic or ceramic) aluminium foil and the silver object are immersed in the hot salt solution. The elevated pH dissolves the aluminium oxide layer on the foil and enables an electrolytic cell to be established. Hydrogen ions produced by this reaction reduce the sulphide ions on the silver restoring silver metal. The sulphide can be released as small amounts of hydrogen sulphide. Rinsing and gently polishing the silver restores a highly polished condition.